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Abstract

Realtime image processing is a rapidly growing application field. It is especially
important to the automotive industry, where a fast image processor can provide
collision detection, lane following, and overtake features, among others. Tradition-
ally, special-purpose SIMD chips have been used for this purpose; however, modern
image analysis techniques require true multiprocessing capability. To fill that need,
hybrid SIMD/MIMD chips are starting to appear. This paper discusses the history
of the IMAP architecture and the IMAP-CE, IMAPCAR, and IMAPCAR2 imple-
mentations of it, with a particular focus on the dynamic reconfiguration capabilities
and programming model of the IMAPCAR2.

1 Background

Multimedia processors are, in this day and age, commonplace. Most development in this
area focuses on audio/video transcoding hardware - devices to compress and decompress
audio and video streams in real time. This can typically be implemented using compara-
tively cheap and efficient special-purpose hardware, with each chip implementing a single
algorithm.

There is, however, an increased demand for real-time image processing and classification,
especially in the domain of semi-autonomous vehicles. Hardware is needed that can not
only transform captured images, but also analyze them - searching for obstacles, lane
markers, and other features [6]. Performing these operations in real time is beyond the
capability of typical embedded processors, such as the ARM, especially when multiple
video streams need to be processed. However, general purpose processors (GPPs) – such
as those found in modern desktops – are far too large, expensive, and power-hungry;
and application specific integrated circuits (ASICs) are too inflexible, requiring a new
circuit for each image processing algorithm used – and consequently a hardware redesign
if algorithms need to be updated or added. It follows that to be useful for this purpose, a
chip is required that is fully programmable, but without the drawbacks inherent in using
an off-the-shelf GPP [5].
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2 IMAP

2.1 The Integrated Memory Array Processor

A description of the IMAP architecture was first published by Fujita et al. [3] in 1995. It
specifies a heavily SIMD-oriented design, consisting of a homogenous array of processor
elements (PE s), each one possessing local memory (internal memory or IMEM) contain-
ing a slice of the image data to be operated on. The intent of the design is to exploit the
high degree of data-level parallelism inherent in most image processing operations - the
image can be divided up, row-wise or column-wise, among the PEs, which then process
the image data and produce results to be collected by a central processor. Since the PE
array is fully programmable, a degree of flexibility not possible with ASICs is obtained; at
the same time, the massively SIMD architecture allows most image processing tasks to be
performed very quickly, while the simplicity of the individual PEs keeps manufacturing
costs and power requirements down.

For communication between PEs, they are linked in a simple ring network, which permits
each PE to communicate with the PEs directly to the left and right of it by exchanging
data in certain registers. This facilitates the implementation of algorithms that require
data from groups of adjacent pixels - each PE can exchange information about the pixel
it is currently processing with its neighbors, thus allowing such algorithms to be imple-
mented without duplication of pixel data across IMEM blocks or expensive IMEM-to-
IMEM transfers.

In addition to describing the general principles of the IMAP architecture, the paper
demonstrates a sample implementation. This IMAP uses 64 eight-bit microprocessors
as the PE array, with 4KB of IMEM attached to each PE. The system used for testing
incorporated eight IMAPs (for a total of 512 PEs) controlled by a seperate 16-bit pro-
cessor. Benchmarks show it performing most simple image processing tasks in less than
a millisecond, which is ample for real-time processing - a typical real-time application
needs to handle video at 30fps, giving it 33ms to process each frame.

2.2 One-Dimensional C

In a later paper, Fujita et al. [2] describe a language intended for use with IMAP, one-
dimensional C (1DC). This is based on ANSI C89, but with extensions to facilitate
data-parallel operation and alleviate the difficulty inherent in manually managing PEs.
(Existing data-parallel C dialects were considered, but deemed insuitable due to implicit
assumptions of more powerful message-passing facilities in the underlying hardware than
IMAP possesses.)

1DC adds a new declaration keyword, sep, which is used to declare a variable that is spread
across the PEs; storage for the variable is divided among PE IMEM, and operations on
it are automatically dispatched to all of the PEs. It also adds new operators for inter-PE
communication and result collection by the CPU, and a new flow control statement, mif,
used to perform operations only on PEs meeting some condition. In each case, the 1DC
compiler emits machine code that handles the minutiae of reading and writing IMEM
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and PE registers and coordinating PE operations.

3 IMAP-CE

3.1 Hardware Design

IMAP-CE is an IMAP implementation developed by Kyo et al [8]. Unlike the original
IMAP design, which envisioned IMAP as a coprocessor attached to a seperate CPU, it
integrates the control processor (CP) onto the chip. A single IMAP-CE processor, then,
consists of 128 PEs with 2KB of IMEM each (divided into sixteen identical tiles of eight
PEs each), a single CP, an external memory interface (EXTIF) connected to an external
RAM bank, and a bank of shift registers used to hold incoming video data (see Fig. 1).
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Figure 1: Overview of IMAP-CE internal
structure.

The video shift registers are connected di-
rectly to IMEM; after each line of video
data arrives, it is copied into IMEM for
processing by the PEs. With 2KB of
IMEM per PE, this allows it to process
an entire 512x512px, 32-bit image without
ever accessing EMEM, at least in princi-
ple. Additionally, the shift registers are
connected to video output, allowing the
IMAP-CE to copy data from IMEM back
into the VSRs and output it as a video
stream - allowing the IMAP-CE to not just
collect and report results in memory, but
output an annotated or completely trans-
formed version of the original video.

When EMEM access is necessary, it is per-
formed via DMA hardware in the EXTIF.
It takes only a single clock cycle to initiate a DMA transfer; however, it takes sixteen
cycles to transfer a complete row of image data between IMEM and EMEM. For this
reason, part of IMEM is set aside as buffers for image transfer, allowing multiple rows of
DMA to be queued at once and then processed in the background.

As with the earlier IMAP and IMAP-VISION systems described by Fujita et al., 1DC
is used as the programming language for IMAP-CE. The implementation is of course
different from the one used by Fujita et al., but the language itself is unchanged.

3.2 Parallelization Techniques

For the purpose of parallelizing existing image processing tasks, they were categorized
based on how their memory access patterns could be represented using a pixel update
line, or PUL. Notionally, the PUL is a line that sweeps across the image, with each pixel
it crosses being operated on by a PE as the line crosses it – each column of pixels being
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stored in the IMEM of a different PE.

The first access pattern, row-wise (see (a) in Fig. 2), is also the simplest: an entire row
is processed by having each PE operate on the top pixel in its column, then each PE
“moves” down one pixel. Once the entire image is processed, each PE has processed an
entire column of the image.

The second, row-systolic (b), is used when each PE needs to process a row rather than a
column. Unlike row-wise, the initial layout of the PUL is diagonal, not horizontal, with
PE 0 operating on the top pixel in its column and PE n operating on the bottom pixel.
As before, each PE operates on its current pixel and then moves down; however, before
moving, the PE passes its current state one PE to the left using the ring network (with
PE 0 sending its results to PE n). Furthermore, when selecting the next pixel, PEs that
”fall“ off the bottom of the image wrap around to the top. In this way, each PE gradually
accumulates the results from an entire row, rather than column, of the image.

The third access pattern, slant-systolic (c), is used for operations with simple adjacent-
pixel data dependencies. It starts with only a single pixel in one corner being processed;
once that is handled, the two adjacent pixels (one below, and one beside) can be processed;
and so forth until the entire image is handled, with the number of active PEs starting at
1, peaking halfway through the image, and then falling back off.

The final access pattern, autonomous (d), is used when the extent of the region(s) to be
processed must be determined as the algorithm runs. In this mode, each PE has a section
of memory reserved as a stack of pixels of interest; each operation may push more pixels
onto this stack, or the stacks of neighboring PEs. The CP manages this process until all
PE stacks are empty. (Do not confuse this with instruction-parallel processing; the PEs
are still performing the same operations on the pixels they examine. It is only the choice
of which pixels to operate on that varies between PEs.)
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Figure 2: Memory access patterns based on a pixel update line.

3.3 Performance

For performance evaluation, several image processing kernels were run in three different
environments: once on the IMAP-CE at 100MHz; once on an Intel Pentium 4 at 2.4GHz,
compiled with the Intel optimizing compiler; and once on the same P4, but compiled
from the IMAP-CE 1DC source code using an optimizing 1DC compiler (which makes
use of the MMX SIMD instructions supported by the P4).
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The IMAP-CE proved to be significantly faster at these image processing tasks, demon-
strating an average speedup of 8 relative to the C implementation and 3 relative to the
1DC implementation with MMX. Furthermore, it had a sustained power requirement
while doing so of only 2W, compared to approximately 100W for the P4.

It was also compared to three other data-parallel media processor chips - the Imagine,
MorphoSys2, and VIRAM. In these comparisons it did not far so well; although the
most power- and space-efficient, it proved to be between 2 and 10 times slower. This is
primarily attributable to its significantly slower clock rate, but also to the fact that the
other three processors mentioned are all full 16-bit processors, whereas IMAP-CE still
relies on 8-bit PEs. The authors suggest that expanding IMAP-CE to be fully 16-bit as
well may be a worthwhile performance improvement.

4 IMAPCAR

4.1 Design

The IMAPCAR design, also described by Kyo et al. [7], is an incremental improvement on
IMAP-CE. It does not make the same sort of drastic changes to IMAP-CE that IMAP-CE
made to IMAP; rather, it addresses the most easily correctable performance deficiencies
in IMAP-CE, and adds the reliability features necessary for it to be safely used as an
automotive vision processor.

To alleviate the slowness of EMEM access, as discussed above, the DMA capabilities of
the EXTIF were upgraded. The DMA request queue was extended, making it possible
to queue up twice as many DMA transfers in the background. Furthermore, scaling
and translation support was added - when performing DMA operations on rectangular
subsections of the image, the EXTIF is capable of performing simple up- or down-scaling
operations and relocating the image region in memory as the DMA transfer occurs, freeing
the PEs from the task.

In addition to the DMA upgrades, the number of video shift registers was tripled, allowing
it to process three video streams of width 512px, or two video streams of width 640px
or 768px, simultaneously. The interconnections among the SRs were also upgraded to
support two different patterns for allocating video data among the PEs - one in which
each PE gets a set of adjacent columns, and one in which each PE gets a set of columns
evenly spaced within the frame. As with the IMAP-CE, the SRs operate on the video
clock until a complete row has been buffered, then operate on the system clock during
the horizontal-blank period to copy the row into or out of IMEM.

Various reliablity enhancements were also made. The temperature tolerances were im-
proved to meet the -40◦C to +85◦C range required for automotive use; the vibration
tolerances were similarly increased. The SDRAM (dynamic RAM) originally used for
EMEM was replaced with SSRAM (static RAM), and the CP instruction cache C$ and
EMEM were augmented with four bits of ECC (error correction code) per 32-bit instruc-
tion word. Finally, IMEM and the CP data cache D$ were given one parity bit per byte
of data. Parity failures, and errors uncorrectable by ECC, will cause the IMAPCAR
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to stop execution and raise an exception (ideally, to be handled by the vehicle’s master
control system).

4.2 Performance

Like IMAP-CE, IMAPCAR proves to be sigificantly faster than general-purpose proces-
sors for performing data-parallel image processing tasks. Furthermore - once program
code is updated to take advantage of the new region of interest (ROI) scaling features
added to the EXTIF - it also proves to be up to three times faster than the IMAP-CE
for the same operations. This is due primarily to the increased DMA queue depth and
the time saved by performing simple scaling operations during DMA rather than using
the PEs for them before or afterwards.

Despite these improvements, the IMAPCAR also consumes less power - 2W maximum,
compared to 2-4W for the IMAP-CE - and operates at a lower core voltage (1.2V com-
pared to 1.8V), although the IO and EMEM voltage remains the same at 3.3V.

In real-world use, such as the overtaking-vehicle detection system described by Kyo et al.
in 2007 [11], the performance improvements relative to GPPs are not quite as dramatic as
the image processing benchmarks would suggest; this is primarily attributable to the fact
that in such a system, the IMAPCAR must necessarily spend some time performing serial
operations with the PEs idle, losing the huge advantage that is has when performing data-
parallel operations - becoming, in effect, a 100MHz processor rather than a 12.8GHz one.
Nonetheless, it proves to be nearly three times as fast as a 3GHz GPP, and can perform
a complete overtake-detection cycle in approximately 31ms, giving it a comfortable 2ms
to spare per frame.

5 IMAPCAR2

5.1 Overview

As noted above, the IMAPCAR’s greatest weakness is that when not performing data-
parallel operations, it effectively operates as a rather slow single-core RISC processor.
This is compounded by the fact that most image analysis tasks conclude with region of
interest analysis - the inspection of several previously-identified regions of the image -
and this operation is generally not data-parallel; each region may be using a completely
different algorithm, and even when not, the ROI analysis algorithm is generally too com-
plex to be treated as a SIMD operation over multiple regions. As a result, once reaching
this stage, the IMAPCAR ends up examining each ROI in serial, relying primarily on the
CP alone.

The obvious solution to this is to add some sort of MIMD (multiple instruction, multiple
data - ie, true multithreading) support to the IMAPCAR. While this could be done by
adding more CPs, the increase in complexity, size, and cost is prohibitive. Instead, a
dynamic reconfiguration approach was taken when designing its successor, the IMAP-
CAR2: the chip can operate in both SIMD and MIMD modes, re-using mostly the same
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hardware for both. [4]

This was accomplished by dividing each tile of eight PEs into two groups of four, and
then adding additional control circuity to each group (see Fig. 3). This permits each
group of four PEs to operate either as four SIMD processing elements, as in the original
design, or - using the new hardware - as a single processing unit or PU, with capabilities
equivalent to that of the CP itself. This new hardware increases the size of each tile by
approximately 20% (and the gate count by approximately 10%).

Figure 3: Detail of one half of a reconfigurable PE tile (from [4]).

5.2 Changes in CP and PE Design

To support this SIMD/MIMD mode switching, some drastic changes - beyond the added
control circuitry needed to support the mode switching in the first place - were made to
the PE design. Not only was the amount of IMEM doubled (from 2KB to 4KB), but
the entire datapath was replaced with a duplicate of the one present in the CP, and the
instruction decoder revised to support a subset of the CP instruction set (only the CP
has instructions for PE control, direct EMEM access, and dynamic reconfiguration).

As a result of this, each PE now has 23 16-bit general purpose registers and six special-
purpose registers; one load/store unit, for accessing IMEM; and two arithmetic/logic
units. Each ALU supports up to two operations per clock, provided they don’t overlap
in hardware usage; in ideal situations, the PE can now execute five instructions per clock
- two arithmetic/logic operations and one load/store.

The instruction fetcher and decoder used by both the CP and the PEs has been upgraded
to match; the shared instruction format is variable-width (16 or 32 bits per instruction),
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but has provisions for packing up to five 16-bit instructions that share common elements
into a single 96-bit instruction that can be fetched and dispatched to the PE array in a
single clock cycle.

Finally, the ring network used for communication among PEs has been renamed the N-
ring, and two additional ring networks have been added to the PE array, the M-ring and
C-ring. The M-ring connects all of the PUs to a DMA controller attached to the CP, and
is used for copying data between EMEM and the PU instruction and data caches; the
C-ring connects all of the PUs to each other (and to the CP), and is used for message-
passing between PUs. Unlike the N-ring, the C-ring contains additional selector hardware
that lets it “skip” tiles, meaning that messages can be passed around the ring at a rate
of one clock cycle per tile, rather than the one clock per PE that the N-ring is limited to;
unlike the M-ring, the C-ring can also be used for message passes between PEs.

5.3 Dynamic Reconfiguration

The chip supports three modes: SIMD mode, in which all of the PEs are active; mixed
mode, in which at most half of the PUs are active (the ones in the “lower half” of each
tile, specifically), while the remaining 64 PEs (the “upper half” ones) are also in use; and
MIMD mode, where more than half of the PEs are being used as PUs. The chip returns
to SIMD mode when all PUs report that they have completed execution.

Reconfiguration for MIMD operation is initiated by a forkinit instruction issued by the
CP, which activates the connective circuitry in the selected PE groups. The CP then uses
the forkp and forkd instructions to copy data into the PU instruction and data caches,
respectively, and then finally the fork instruction to start the PU running.

When operating in PU mode, nearly all of the resources of the four PEs are used to
make up the PU. The datapath of PE0, being nearly identical to the CP datapath, is
re-used entire as the PU datapath. The IMEM blocks are combined to make up the 8KB
instruction and data caches, and the registers from PE2 and PE3 are used for cache tags.
Finally, the registers from PE1 and the ALUs from PEs 1 through 3 are combined to
form the FPU.

In this mode, the IMEM is gone, and the data and instruction caches behave much more
similarly to the caches found on GPPs - when the code executing on the PU attempts
to access a page of memory, it is transparently copied from EMEM into the appropriate
cache if not already present. However, this is a relatively slow operation, and may copy
surrounding memory that is not required by the PU. To alleviate this, instructions are
provided to explicitly transfer regions of memory between EMEM and the instruction
and data caches. These instructions are doubly important, as the PUs have no cache
coherency hardware - changes to the cache will not automatically be written back to
EMEM, and changes to EMEM will not automatically be copied into the cache. Thus,
explicit transfers must be used to update external memory, and fetch updates from it.
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5.4 Programming Model

The SIMD programming model is identical to that of the IMAPCAR, using 1DC as the
programming language. This section will therefore only discuss the programming model
for the new MIMD mode.

In MIMD mode, the 1DC data-parallel extensions are unavailable to the PUs; they are
programmed in plain ANSI C. Communication with other PUs and with the CP is per-
formed with send and recv primitives, which implement one-to-one, one-to-many, and
one-to-any message passing using the C-ring; communication with main memory hap-
pens automatically on a cache miss, or can be triggered explicitly using roiread and
roiwrite, and uses the M-ring.

At the application level, a pthreads-compatible API is exposed, with synchronization
primitives such as semaphores implemented using message passing. However, this has one
major drawback: pthreads is designed around the assumption of shared memory. While
this is a safe assumption in single-core systems, and multi-core systems with cache co-
herency, the IMAPCAR2 does not have coherent caches. Thus, any communication more
complex than simple synchronization (implemented internally with the message-passing
operations) must be done using low-level message passing or ROI transfer operations;
updating shared memory structures will not work, as once a page is copied into cache, it
is no longer shared.

5.5 Performance

The IMAPCAR2 proves to be approximately twice as fast as the IMAPCAR, even when
operating solely in SIMD mode. This is attributable primarily to the increased capabil-
ities of the PEs (twice as much IMEM, 16-bit datapath, and more efficient instruction
dispatch), all of which increase the amount of work that can be done per instruction and
reduce the overall instruction count of each operation. An increase in the clock speed to
150MHz is also a major factor. [10]

In MIMD mode, the speedup is greatly dependent on what operations are being per-
formed. For heavily parallelizeable operations that previously had to be executed solely
on the CP, speed improvements of up to 10x were seen when using all 32 PUs. In prac-
tice, performance tends to increase linearly up to 8 PUs; beyond that, M-ring and DMA
contention becomes a serious bottleneck as all of the PUs attempt to access EMEM, and
diminishing returns set in rapidly. It is likely that algorithms less dependent on EMEM
access could show performance improvements approaching the theoretical maximum.

5.6 Future Work

The IMAPCAR2’s biggest weakness is the mismatch between the environment for MIMD
programming presented to the programmer, and the actual capabilities of the chip. The
use of pthreads as an API encourages the programmer to use a shared-memory design,
but in practice any use of shared memory must be done with great care and explicit
synchronization between cache and EMEM.
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IMAPCAR2 could greatly benefit from a message-passing multithreading built on top
of, or replacing, the pthreads API. In practice, IMAPCAR2’s cache-acoherent design
and message-passing primitives more closely resemble the structure of a modern high-
performance computing cluster than they do a shared-memory symmetric multiprocessing
system, and for this reason Kyo et al. suggest MPI [9] or something like it as a suitable
API for use of IMAPCAR2. Pilot [1], a much simpler API traditionally implemented on
top of MPI, would also be a suitable choice, and a Pilot implementation on IMAPCAR2
is likely to be the subject of my thesis.

6 Conclusion

The IMAP architecture has proven to be a highly efficient and effective architecture for
image processing tasks. Despite its simplicity, all implementations of it have performance
that completely outclasses GPPs in this problem domain, and because of it, low power
requirements.

However, while ideal for data-parallel operations, IMAP’s single-core design hurts it
severely when performing instruction-parallel operations such as region-of-interest in-
spection. IMAPCAR2 addresses this by allowing SIMD processing elements to be reused
as additional MIMD cores as needed.

IMAPCAR2’s greatest weakness is its MIMD programming model, which uses a shared-
memory API, despite the fact that the underlying hardware more closely resembles a
local-memory system with message-passing. Development of a message-passing API that
more closely corresponds to the IMAPCAR2’s capabilities could be a fruitful area for
further research.
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